Publications

  1. Bill, J., Pailian, H, Gershman, S.J., & Drugowitsch, J. (2020). Hierarchical structure is employed by humans during visual motion perception. Proceedings of the National Academy of Sciences (PNAS), 117 (39), 24581-24589.

  2. Pailian, H., Carey, S.E.,  Halberda, J., & Pepperberg, I.M. (2020).  The evolution and development of costs in visual manipulation memory. Nature: Scientific Reports, 10(1),1-7.

  3. Pailian, H, Wetherhold, J., Simons, D.J., & Halberda, J. (2020). Using the Flicker task to estimate visual working memory storage capacity during dynamic viewing. Attention, Perception, & Psychophysics, 1-19.       

  4. Pailian, H., Libertus, M., Feigenson, L., & Halberda, J. (2016). Visual working memory storage capacity increases between ages 3 and 8 years controlling for gains in exogenous and endogenous attentional control in a visual search paradigm. Attention, Perception, & Psychophysics, 1-18.

  5. Pailian, H., & Halberda, J. (2015) The reliability and internal consistency of one-shot and flicker change detection for measuring individual differences in visual working memory capacity. Memory & Cognition, 43, 397-420.

  6. Pailian, H., & Halberda, J. (2013) Independent costs for storing and manipulating information in visual working memory. Visual Cognition, 21(6), 704-707.

  7. Pailian, H. (under revision, Psychological Science). The costs of manipulating information in visual working memory.

  8. Pailian, H., Wilmer, J., & Halberda, J. (in prep).  The nature, extent, and importance of human variation in change detection ability.

  9. Pailian, H, Santarnecchi, E., Pascual-Leone, A., & Alvarez, G.A. (under review). Dissociable augmentation and structure of visual working memory storage and manipulation. Nature Communications.

Invited Lectures

  1. Pailian, H. (2020). Costs of manipulating in memory. University of Toronto, February 7, Toronto, ON. 

  2. Pailian, H. (2019). Neurocognitive Development of Limits in Mental Manipulation. Boston University, July 18, Cambridge, MA. 

  3. Pailian, H. (2019). Visual Manipulation Memory. MIT (Psychology Department), June 4, Cambridge, MA. 

  4. Pailian, H. (2018). The Cognitive and Neural Architecture of Visual Manipulation Memory. Harvard University (Psychology Department), November 8, Cambridge, MA. 

  5. Pailian, H. (2018). Limits in visual manipulation memory. University of Oxford (Psychology Department), September 7, Oxford, UK. 

  6. Pailian, H. (2018). Visual manipulation memory. University of York, September 5, York, UK.

  7. Pailian, H. (2018). The working part of working memory. Harvard University (Carey Lab, Caramazza Lab), March 28 & April 5, Cambridge, MA. 

  8. Pailian, H. (2017). Visual working memory: storage vs. manipulation. University of Toronto (Mississauga Campus), November 3, Toronto, ON. 

  9. Pailian, H. (2017). Origins of limits in visual working memory limits. Harvard Medical School (Wolfe Lab), March 28, Cambridge, MA. 

  10. Pailian, H. (2015). Breaking visual working memory: (in)dependent representations for storage and manipulation. Harvard University, October 22, Cambridge, MA. 

  11. Pailian, H. (2014). The costs of manipulating information in visual working memory. Brown University, August 25, Rhode Island, MA. 

  12. Pailian, H. (2013). Constrains placed on executive control abilities in visual working memory. University of Toronto, June 30, Toronto, ON. 

Conference Talks

  1. Pailian, H., & Alvarez, G.A. (2020). Neuroaugmentation reveals dissociable neural substrates underlying storage and manipulation in visual working memory. Vision Sciences Society Conference, June 19-24, St. Petersburg, Fl.

  2. Pailian, H., Doshi, F., & Alvarez, G.A. (2020). Using deep convolutional neural networks to examine the role of representational similarity in visual working memory. Visual Working Memory Symposium, June 4th, Virtual Conference.

  3. Pepperberg, I.M., Libertus, M., Feigenson, L., Halberda, J., & Pailian. H. (2019). Evolution and development of signature limits in mental manipulation. Vision Sciences Society Conference, May 19, St. Petersburg, FL.

  4. Pailian, H., & Alvarez, G.A. (2018). Limits in visual working memory manipulation. International Conference for Spatial Cognition, September 12, Rome, Italy.

  5. Pepperberg, I.M., & Pailian. H. (2017). Evolution of mechanisms underlying visual working memory manipulation: when “bird-brain” is a compliment. Psychonomic Society Conference, November 10, Vancouver, BC.

  6. Pailian, H., Stormer, V., & Alvarez, G.A. (2017). Neurophysiological marker of visual working memory manipulation. VSS, the Vision Sciences Society, May 23, St. Petersburg, FL.

  7. Pepperberg, I.M., & Pailian. H. (2017). Mechanisms of visual working memory manipulation: when “bird-brain” is a compliment. VSS, the Vision Sciences Society, May 24, St. Petersburg, FL.

  8. Pailian, H., & Halberda, J. (2015). Breaking visual working memory: independence between costs in storage and manipulation abilities. VSS, the Vision Sciences Society, May 15-20, St. Petersburg, FL.

  9. Pailian, H., & Halberda, J. (2014). On the dynamic nature of visual working memory: separate limits for the storage and manipulation of information. VSS, the Vision Sciences Society, May 16-21, St. Petersburg, FL.

  10. Pailian, H., & Halberda, J. (2014). Dynamic nature of visual working memory across time and space. VSS, the Vision Sciences Society Satellite Event, May 16-21, St. Petersburg, FL.

  11. Pailian, H., & Halberda, J. (2013). Independent costs for storing and manipulating information in visual working memory. Annual Object Perception Attention and Memory meeting, November 14, Toronto, ON, Canada. 

  12. Pailian, H. & Halberda, J. (2013). Moving beyond storage limitations: exploring the dynamic manipulation of representations in visual working memory. VSS, the Vision Sciences Society, May 10-15 Naples, FL.

  13. Wilmer, J. B., Germine, L., Ly, R., Hartshorne, J.K., Kwok, H., Pailian, H., Williams, M.A., & Halberda, J. (2012). The heritability and specificity of change detection ability. VSS, the Vision Sciences Society, May 11‐16, Naples Florida.

Conference Poster Presentations

  1. Doshi, F., Pailian, H., & Alvarez, G.A. (2020). Using deep convolutional neural networks to examine the role of representational similarity in visual working memory. Vision Sciences Society Conference, June 19-24, St. Petersburg, FL.

  2. Schmitt, W., Pailian, H., & Alvarez, G.A. (2020). Using neurostimulation to augment the encoding of information in visual working memory. Vision Sciences Society Conference, June 19-24, St. Petersburg, FL.

  3. Pailian. H, & Alvarez, G.A. (2019). Probing the neurocognitive architecture of visual working memory by enhancing storage vs. manipulation. Vision Sciences Society Conference, May 21, St. Petersburg, FL.

  4. Bill, J., Pailian. H, Gershman, S., & Drugowitsch, J.. (2019). Hierarchical motion structure is employed by humans during visual perception. Vision Sciences Society Conference, May 21, St. Petersburg, FL.

  5. Pailian, H., Santarnecchi, E., Pascual-Leone, A., & Alvarez, G.A. (2018). Neuro-enhancement of visual working memory storage and manipulation via transcranial-direct current stimulation. ECVP, European Conference for Visual Perception, August 28, Triste, Italy.

  6. Pailian, H., & Carey, S.E. (2018). Set Representations in non-linguistic thought. McDonnell Network Plenary Conference, July 10, Barcelona, Spain.

  7. Pailian, H., & Alvarez, G.A. (2018). Sources of error underlying visual working memory manipulation. Poster presented at VSS, the Vision Sciences Society, May 20, St. Petersburg, FL.

  8. Wilmer, J., Pailian, H., Germine, L., Ly, R., & Halberda, J. (2017). Where do cognitive limitations come from and why do we care? The divergent cases of visual working memory storage and approximate number sense acuity. VSS, the Vision Sciences Society, May 19-24, St. Petersburg, FL.

  9. Pailian, H., Tran, E., & Alvarez, G.A. (2016). Constraints on Information Compression in Visual Working Memory. VSS, the Vision Sciences Society, May 13-18, St. Petersburg, FL.

  10. Cunningham, C.A., Pailian, H., & Egeth, H.E. (2014). Characterizing representations in activated long-term memory.  Psychonomics Society annual meeting, November 14, Long Beach, CA.

  11. Graves, T., Pailian, H., & Egeth, H. (2014). The role of rapid disengagement in overcoming attentional capture. VSS, the Vision Sciences Society, May 16-21, St. Petersburg, FL.

  12. Eisinger, R., Im, H., Pailian, H. & Halberda, J. (2013). Ensemble-based change detection. VSS, the Vision Sciences Society. May 10-15, Naples, FL.

  13. Pailian, H., Libertus, M., Feigenson, L., & Halberda, J. (2013). Developmental changes in visual short-term memory (VSTM) capacity between Ages 3 and 8 Years. SRCD, April 18-20 Seattle, WA.

  14. Pailian, H., Libertus, M., Feigenson, L., & Halberda, J. (2013). Measuring individual differences in children’s visual short-term memory capacity using the Flicker paradigm. SRCD, April 18-20 Seattle, WA.

  15. Pailian, H., & Halberda, J. (2012). The cost of manipulating representations in working memory. VSS, the Vision Sciences Society, May 11-16, Naples, FL.

  16. Pailian, H. & Halberda, J. (2011). Individual differences in visual working memory capacity assessed by the Flicker task. VSS, the Vision Sciences Society, May 6-11, Naples, FL.